Part Number Hot Search : 
TB0190A SEC22CR MC10113 D1510 LVC1G0 ZX85C 74AUP LVC1G0
Product Description
Full Text Search
 

To Download IRF7491TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 09/16/04 irf7491pbf hexfet   power mosfet  high frequency dc-dc converters  lead-free benefits applications  low gate to drain charge to reduce switching losses fully characterized capacitance including effective c oss to simplify design, (see app. note an1001) fully characterized avalanche voltage and current notes   through  are on page 8 so-8 top view 8 12 3 4 5 6 7 d d d d g s a s s a absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c maximum power dissipation w linear derating factor w/c dv/dt peak diode recovery dv/dt  v/ns t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead CCC 20 c/w r ja junction-to-ambient (pcb mount) * CCC 50 -55 to + 150 0.02 max. 9.7  6.1 77 80 20 2.5 4.4 v dss r ds(on) max i d 80v 16m @v gs = 10v 9.7a  downloaded from: http:///
irf7491pbf 2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 80 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.08 CCC v/c r ds(on) static drain-to-source on-resistance CCC 14 16 m ? v gs(th) gate threshold voltage 3.5 CCC 5.5 v i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 dynamic @ t j = 25c (unless otherwise specified) parameter min. typ. max. units gfs forward transconductance 9.6 CCC CCC s q g total gate charge CCC 51 76 q gs gate-to-source charge CCC 18 CCC nc q gd gate-to-drain ("miller") charge CCC 18 CCC t d(on) turn-on delay time CCC 22 CCC t r rise time CCC 19 CCC t d(off) turn-off delay time CCC 32 CCC ns t f fall time CCC 10 CCC c iss input capacitance CCC 2940 CCC c oss output capacitance CCC 290 CCC c rss reverse transfer capacitance CCC 160 CCC pf c oss output capacitance CCC 980 CCC c oss output capacitance CCC 210 CCC c oss eff. effective output capacitance CCC 310 CCC avalanche characteristics parameter units e as single pulse avalanche energy  mj i ar avalanche current  a diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 9.7 (body diode) a i sm pulsed source current CCC CCC 77 (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 47 CCC ns q rr reverse recovery charge CCC 110 CCC nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld ) typ. CCC CCC conditions v ds = 25v, i d = 5.8a i d = 5.8a v ds = 40v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz 130 5.8 mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 5.8a, v gs = 0v  t j = 25c, i f = 5.8a, v dd = 25v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 5.8a  v ds = v gs , i d = 250a v ds = 64v, v gs = 0v v ds = 64v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v max. v gs = 0v, v ds = 1.0v, ? = 1.0mh z v gs = 0v, v ds = 64v, ? = 1.0mh z v gs = 0v, v ds = 0v to 64v  v gs = 10v  v dd = 40v i d = 5.8a r g = 6.2 ? downloaded from: http:///
irf7491pbf www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 16 0 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 9.7a 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 6.0v 20s pulse width tj = 150c vgs top 15v 12v 10v 8.0v 7.5v 7.0v 6.5v bottom 6.0v 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 0.10 1.00 10.00 100.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 25v 20s pulse width 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 6.0v 20s pulse width tj = 25c vgs top 15v 12v 10v 8.0v 7.5v 7.0v 6.5v bottom 6.0v downloaded from: http:///
irf7491pbf 4 www.irf.com fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage fig 8. maximum safe operating area 0 1 02 03 04 05 06 0 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 64v v ds = 40v v ds = 16v i d = 5.8a 0.0 0.2 0.4 0.6 0.8 1.0 v sd , source-todrain voltage (v) 0.10 1.00 10.00 100.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec t a = 25c tj = 150c single pulse downloaded from: http:///
irf7491pbf www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case 0.01 0.1 1 10 100 0.00001 0.0001 0.001 0.01 0.1 1 10 100 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thja a p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thja 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) fig 10a. switching time test circuit v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %         + -   25 50 75 100 125 150 0 3 6 9 12 t , case temperature ( c) i , drain current (a) d fig 9. maximum drain current vs. ambient temperature t a , ambient temperature (c) downloaded from: http:///
irf7491pbf 6 www.irf.com fig 13. on-resistance vs. gate voltage fig 12. on-resistance vs. drain current fig 14a&b. basic gate charge test circuit and waveform fig 15a&b. unclamped inductive test circuit and waveforms fig 15c. maximum avalanche energy vs. drain current d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -   q g q gs q gd v g charge t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 15 0 0 60 120 180 240 300 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 2.6a 4.7a 5.8a 0 1020304050607080 i d , drain current (a) 10 11 12 13 14 15 16 17 18 19 20 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) v gs = 10v 6 7 8 9 10 11 12 13 14 15 16 v gs, gate -to -source voltage (v) 0 5 10 15 20 25 30 35 40 45 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 9.7a downloaded from: http:///
irf7491pbf www.irf.com 7 so-8 package outlinedimensions are shown in millimeters (inches) so-8 part marking e1 de y b aa1 h k l .189 .1497 0 .013 .050 basic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 bas ic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 mi n max millimeters inches min max dim 8 e c .0075 .0098 0.19 0.25 .025 basic 0.635 basic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 7 k x 45 8x l 8x c y 0.25 [.010] c a b e1 a a1 8x b c 0.10 [.004] 4 3 12 f oot p r i nt 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 4. ou t l i ne conf or ms t o j e de c ou t l i ne ms - 012 aa. not e s : 1. dimens ioning & tolerancing per asme y14.5m-1994. 2. cont rolling dimens ion: millimet er 3. dimensions are shown in millimeters [inches]. 5 dime ns ion doe s not incl u de mol d pr ot ru s ions . 6 dime ns ion doe s not incl u de mol d pr ot ru s ions . mold protrus ions not to exceed 0.25 [.010]. 7 dimens ion is t he lengt h of lead for soldering to a s ubst rat e. mold protrus ions not to exceed 0.15 [.006]. 8x 1.78 [.070 ] dat e code (yww) xxxx international rectifier logo f 7101 y = last digit of the year part number lot code ww = week e xample: t his is an irf7101 (mos f et ) p = de s i gnat e s l e ad- f r e e product (optional) a = assembly site code downloaded from: http:///
irf7491pbf 8 www.irf.com  repetitive rating; pulse width limited by max. junction temperature.  starting t j = 25c, l = 7.4mh r g = 25 ? , i as = 5.8a.  pulse width 400s; duty cycle 2%.   when mounted on 1 inch square copper board.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  i sd 5.8a, di/dt 250a/s, v dd v (br)dss , t j 150c. 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) n otes: 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters(inches). 3 . outline conforms to eia-481 & eia-541. so-8 tape and reel data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualifications standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/04 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7491TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X